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Figure 1: Images rendered in realtime with OpenRT on PC clusters at resolution 640× 480. a) A Mercedes C-Class model consisting of
320.000 bezier patches and 200.000 triangles for the environment renders between 4.8 and 20 fps on 30 CPUs with an average of 2.4 GHz
[Wald et al. 2006]. b) Global illumination simulation for a model of a power plant with 50 million triangles renders with 2 fps (when viewed
from the inside) on 48 CPUs with 2.4 GHz [Benthin et al. 2003]. c) A global illumination simulation for 365.000 individual plant instances
with all in all over 1.5 billion polygons renders at 1.7 fps on 48 CPUs with 2.4 GHz and 8GB RAM [Dietrich et al. 2005].

Abstract

Realtime ray tracing produces high quality images at interactive
frame rates. While the realtime rendering domain is still domi-
nated by raster graphics, realtime ray tracing recently has become
much more powerful. This paper addresses the essence of realtime
ray tracing: the various acceleration techniques which yield inter-
active performance, how coherence between rays can be exploited
and effective parallelization. In addition to that, a comprehensive
comparison of realtime ray tracing versus modern raster graphics
hardware is given. Compared to raster graphics, ray tracing allows
highly realistic image synthesis and most importantly, it scales well
for massively complex scenes. Considering those advantages and
the fact that realtime ray tracing software performance on PCs has
finally surpassed the performance of dedicated rasterization hard-
ware for highly complex models, all indications are that ray tracing
may replace rasterization based realtime rendering for scientific vi-
sualization and games in the near future.

CR Categories: I.3.7 [Computer Graphics]: Ray Tracing—Three-
Dimensional Graphics and Realism;
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1 Introduction

Ray tracing [Appel 1968] is an algorithm that supports highly re-
alistic image synthesis. For this purpose rays are cast from the eye
point through the pixels of an image plane and intersected with the
scene geometry. The shortest distance from the image to an in-
tersection determines the visibility of the scene through that pixel.
The brightness of that pixel is an estimate of the irradiance emit-
ted from the found intersections through that pixel towards the eye
point. It is gathered by shooting more rays from that point into the
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scene i.e. towards all light sources and weighting their energy by
the point’s bidirectional reflectance distribution function (BRDF).
We distinguish between two major methods for the estimation of
the irradiance from a point of the scene: Whitted-style ray tracing
(simply referred to as ray tracing) [Whitted 1980] and global illu-
mination. For ray tracing the estimate only includes direct illumi-
nation, perfect reflections and refractions. Even more realistic than
that are global illumination simulations which account for the dif-
fuse inter-reflections from the complete scene arriving in that point,
as described by the rendering equation stated by Kajiya [1986].

Due to the high intrinsic computational cost of ray tracing it has
not been considered for realtime rendering for a long time. Nev-
ertheless, with the increasing computation power of modern CPUs,
interactive ray tracing and even interactive global illumination have
become reality and offer a number of benefits over traditional ras-
terization based algorithms.

There are many approaches to achieve interactive frame rates for
ray tracing. The most successful ones accelerate those parts of the
ray tracing algorithm which have the highest computational cost.
Moreover, the inherently parallel nature of ray tracing can be mas-
sively exploited by using SIMD instructions on modern CPUs, by
distributing workload in PC clusters or by using dedicated highly
parallel ray tracing hardware. The effectiveness of parallelization
can even be increased by taking advantage of coherence between
rays. All these techniques combined with cache-awareness can im-
prove the performance of a ray tracer by several orders of magni-
tudes.

Section 2 explains the computational cost of different parts of a
ray tracing algorithm. All optimizations presented in this paper are
based on this knowledge. A very important class of optimizations
are represented by the spatial acceleration structures which are dis-
cussed in section 3. Section 4 introduces coherent ray tracing and its
application for interactive global illumination. To effectively take
advantage of coherence, parallelization and caching, explained in
section 5, are necessary. Last but not least, section 6 discusses the
advantages and limitations of realtime ray tracing in comparison to
rasterization.



2 The Computational Complexity of Ray
Tracing

In order to maximize optimization profits one needs to carefully
analyze the computational complexity of the ray tracing algorithm.
The most expensive operation is the search for ray-geometry inter-
sections. To reduce the number of primitives to be intersected ac-
celeration structures like kd-trees are used. They typically reduce
the complexity for finding a small set of potentially intersecting ge-
ometric primitives to be O(logn) if the number of primitives is n.
Yet, the tree traversal operations are the most frequent operations
per pixel. A carefully chosen acceleration structure and a scene
traversal algorithm that is optimized for that structure are most es-
sential.

Computing ray-geometry intersection points is also very costly be-
cause it happens quite often per pixel. The number of intersections
to be calculated depends on the spatial resolution of the search
structure. The higher the resolution the deeper the search tree.
In other words, there is always a trade-off between the number
of traversal operations and the number of intersection calculations
which can be controlled by adjusting the maximum number of geo-
metric primitives in a volume element of a scene acceleration struc-
ture (see section 3). Typically the number of intersection calcu-
lations is less than the number of acceleration structure traversal
operations for a given pixel.

In contrast the computational complexity of texture mapping and
shading is insignificantly compared to the complexity of the other
operations since it has to be done only once for a found intersec-
tion point. From this analysis one can tell that optimization of the
scene traversal and reduction of ray-geometry intersections yields
the most performance payoff.

3 Spatial Acceleration Structures

Spatial acceleration structures have the most impact on rendering
performance, because they restrict the potentially visible set for a
given ray to a very small number of primitives independently of the
overall size of the scene. This makes visibility queries by shooting
rays into the scenes very efficient.

A spacial indexing structure is a tree of voxels1 or bounding vol-
umes. Each volume element in the tree may contain some sub-
elements (commonly referred to as children) and a list of geometric
primitives and their shading information. Intersecting a ray with
the scene means traversing the acceleration structure by intersect-
ing the ray with the children of a bounding volume recursively until
the ray hits an opaque primitive or an empty leaf of the tree.

The following sections discuss various acceleration structures
which have been successfully used for realtime ray tracing.

3.1 The Kd-Tree

The kd-tree (short for k-dimensional tree) [Jansen 1986] is a space
partitioning data structure for organizing objects in a k-dimensional
space. It is a special case of the BSP tree (binary space partition
tree). A kd-tree uses only splitting planes that are perpendicular
to one of the coordinate system axes. This differs from BSP trees,
in which arbitrary splitting planes can be used. Building a static

1A voxel (a fusion of the words volumetric and pixel) is a volume ele-
ment on a regular grid in three dimensional space.

kd-tree from n points takes O(n logn) time and orthogonal range
search takes O(logn) time where n is the number of cells in the
kd-tree. Along with clever heuristics for subdivision, kd-trees have
been successfully used for realtime ray tracing [Wald 2004, Havran
2001, Reshetov et al. 2005].

Figure 2: Ray intersection with a kd-tree. The ray intersects with
the top level splitting plane and is therefore split into the ranges
a and b. First, the left tree is checked recursively against a. The
right tree is checked against b only if a does not hit any triangle. In
that case b is split up to c and d. Since the upper cell is empty c
is immediately discarded and d is tested against the triangle in the
lower cell.

Because of his axis aligned splitting planes the range search for a
given ray can be implemented very easily and is very fast. Since all
normals of the subdivision planes coincide with one of the coordi-
nate axes, scalar products and object volume element intersection
tests are numerically robust and efficient. In addition to that, the
runtime of ray shooting against a kd-tree in a realtime renderer can
be greatly improved by careful tree construction [Havran 2001].
That construction is based on a greedy algorithm with a cost func-
tion called the surface area heuristic [MacDonald and Booth 1989;
Havran 2001]. The performance of a kd-tree is further improved by
a traversal algorithm which allows to traverse entire packets of rays
into the scene [Wald et al. 2001a].

One problem common to all spatial partitioning schemes is that ob-
jects can reside in more than one volume element. This problem
can be reduced by allowing only split planes which intersect just
vertices of an object. However, as a consequence of the a priory un-
known number of references in the kd-tree, memory management
becomes an issue during the construction of the hierarchy. For ef-
ficient creation of the data structure complete pre-allocation would
be most efficient. There are heuristics to predict memory size of a
kd-tree but they do not work well for arbitrary scenes. When the
heuristics are too pessimistic far too much memory is allocated, or
even worse, when the predicted size is too small several times of
expensive reallocation may be the consequence. Implementations
that do not pre-allocate the memory but use dynamic data structures
instead suffer from memory fragmentation. There are acceleration
structures which do not suffer from this problem, i.e. the bounding
interval hierarchy.

Another general disadvantage of the kd-tree is its inability to be ad-
justed efficiently for dynamic scenes. Complete or partial rebuild-
ing of a kd-tree for every frame is too costly for complex scenes.
However, it is possible to overcome this problem by using a two-
level kd-tree. The scene acceleration structure is divided in low-
level kd-trees representing the objects which reside in a high-level
kd-tree for the scene [Wald et al 2003]. Usually large parts of a
scene are static and therefore do not need to be updated. The low-
level structures for animated objects can be rebuilt if necessary. In



some cases where the animation of whole objects can be described
by an affine transformation, there is no need to rebuild the low-level
tree. Instead the intersecting rays are transformed with the inverse
transformation [Lext and Akenine-Möller 2001]. This trick does
not help in the case of unstructured motion. Here the local low-
level trees have to be rebuilt for every frame and the high-level tree
might be invalidated too. The costly rebuilding of a local tree can
be done on demand, i.e. when a ray hits such object. This way only
the local acceleration structures of visible objects need to be rebuilt.
It is easy to see that this approach works very well for highly oc-
cluded environments like indoor scenes but will fail for open scenes
where lots of objects exhibiting unstructured motion are visible.

3.2 The Bounding Volume Hierarchy (BVH)

A bounding volume hierarchy [Rubin and Whitted 1980] is a tree of
bounding volumes where each bounding volume stores references
to child nodes and each leaf node has a list of geometric primitives.
In addition to that, the bounding volume is guaranteed to entirely
enclose the bounding volumes of its descendants. Each geometric
primitive is exactly one leaf. Bounding volumes can be represented
by arbitrary shapes but axis-aligned boxes are the best choice for
realtime rendering.

In contrast to spatial subdivision structures such as the kd-tree,
the bounding volume hierarchy divides the object hierarchy, and
a given object hierarchy is more robust than a given subdivision of
space. Bounding volume hierarchies differ from space partitioning
data structures like kd-trees, in that overlapping bounding volumes
are allowed and empty space is not explicitly represented. Due to
the fact that overlapping bounding volumes are allowed, a bounding
volume hierarchy can be quickly updated for every frame without
invalidating the whole structure. This advantage makes them well
suited for dynamic scenes. Moreover, bounding volume hierarchies
can be built very efficiently because the memory requirements can
be bounded a priori.

Figure 3: Ray intersection with a traditional BVH. The ray has to
be intersected with both boxes a and b because they are not ordered.
Since the ray overlaps with a, it is tested against c and d too.

The biggest disadvantage of bounding volume hierarchies is, that
unlike space partitioning structures the child volumes are not spa-
tially ordered, therefore it is not possible to abort the intersection
procedure early on first hit (see Figure 3). Even if a ray hits a child,
it is not guaranteed that there are no other sibling volumes which
would yield intersections in front of it. Consequently all children
of a parent volume have to be tested against a ray that hits that vol-
ume. This is why bounding volume hierarchies in their original
form perform worst of all spatial acceleration structures for visi-
bility queries. Despite this, recent research shows that bounding

volume hierarchies can perform as well as kd-trees. Even better,
they are well suited for fully dynamic scenes [Wald et al. 2007]. To
make bounding volume hierarchies more effective, the same surface
area heuristic as for kd-trees can be applied to find an optimal tree
of bounding volumes for a given set of geometric primitives [Wald
and Havran 2006]. While it has substantial impact on rendering
times, it does not make bounding volume hierarchies as effective as
kd-trees. It is the clever combination of ordering the children of a
bounding volume along an axis to allow early exit on first hit and
early exit on miss strategies, and a special traversal algorithm that
determines the order of the bounding volumes from properties of
the ray2. Most important, the traversal algorithm can traverse the
bounding volume hierarchy for a large number of rays in parallel
(usually 8× 8 or 16× 16 rays) with very few ray-box intersection
tests. This is achieved by testing the boxes against a frustum repre-
senting a whole packet of rays, not against the single rays [Reshetov
et al. 2005; Wald et al. 2007]. The frustum traversal algorithm is
another advantage of bounding volume hierarchies over kd-trees
which can hardly use this optimization because they have to com-
pute the entry and exit distances to the box for all rays in the packet
[Wald 2004].

3.3 The Bounding Interval Hierarchy

The bounding interval hierarchy is a crossover of space partition-
ing and bounding volume hierarchies combining the advantages of
both. Unlike bounding volume hierarchies which store a full axis-
aligned bounding box for each child, the idea of the bounding in-
terval hierarchy is to only store two parallel planes perpendicular to
one of the axes of the parent volume. Given a bounding box, an axis
and the geometry inside the box, the first plane defines a child vol-
ume that contains all primitives that are on the left side of the box
with respect to the axis. The second plane defines a volume that
contains all primitives that are on the right side of the box with re-
spect to the given axis. The two volumes may overlap. If not a third
volume which is empty by definition resides between the two child
volumes. The bounding interval hierarchy as acceleration structure
for realtime ray tracing has been shown to outperform other fast ac-
celeration structures significantly [Wächter and Keller 2006]. Also
Wächter and Keller point out in their paper that bounding interval
hierarchies can be combined with frustum traversal but they have
not yet presented an implementation and performance measures for
it. Unfortunately, a performance comparison between bounding in-
terval hierarchy and the new efficient application of bounding vol-
ume hierarchies (see section 3.2) has not yet been published at the
time of this writing. Therefore it is not clear which approach is the
fastest.

The efficiency of the bounding interval hierarchy is due to the ad-
vantages inherited from space partitioning structures, namely or-
dered traversal which allows early exit (see Figure 4). Opposite to
space partitioning, bounding interval hierarchies have a fixed pre-
allocatable size depending on the number of primitives. The advan-
tages inherited by bounding volume hierarchies are that the volume
elements can overlap and thus allow efficient update of the structure
for dynamic scenes. But the key to the exceptional performance of
bounding interval hierarchies is a new global heuristic for partition-
ing and the idea that the exact structure of untouched volumes can
be computed on demand. The global heuristic differs from the con-
ventional approaches which use a greedy algorithm in combination
with the surface area heuristic. Instead it is a non-greedy heuristic
which is cheap to evaluate because it does not explicitly analyze

2Note that this modifications of the bounding volume hierarchy yields a
spatial indexing structure that is very similar to the bounding interval hier-
archy discussed in section 3.3



Figure 4: Ray intersection with a bounding interval hierarchy. The
ray intersects both vertical split planes and is divided into the ranges
a and b. a is tested against the left tree first by starting with the top
triangle because a is entirely before both split planes with respect
to the (vertical) axis. If that test yields no intersection point a will
not be tested against the lower triangle. Then b is tested against the
right tree by testing against the lower triangle immediately because
b is entirely after the second split plane.

the objects in the scene beforehand. The heuristic uses so called
candidate planes which divide a volume exactly in the middle of its
longest side (see Figure 5). The candidate planes are used to sort the
contents of the volume into left and right buckets. After that the co-
ordinates of the primitives in the buckets are spatially sorted along
the axis perpendicular to the candidate split plane. The structure
of the sorting algorithm is identical to quicksort and consequently
runs in O(n logn) on the average. After that, the two splitting planes
are defined by the maximum coordinate of primitives from the left
bucket and the minimum coordinate of the primitives of the right
bucket. The clue is, that the sorting and definition of splitting planes
may be omitted for volumes that are not visible, resulting in very
high construction performance. As a consequence the construction
of the bounding interval hierarchy data structure is faster than oth-
ers by orders of magnitudes and can be done directly without the
need for a preprocessing step. Thus, the application of bounding
interval hierarchies for realtime ray tracing is called Instant Ray
Tracing [Wächter and Keller 2006].

Figure 5: Illustration taken from Wächter and Keller [2006]: a)
Split plane candidates from hierarchically subdividing along the
longest side of the axis-aligned bounding box. b) Used candidates
and c) resulting bounding interval hierarchy.

4 Coherent Ray tracing

Rays are coherent, if they point into similar directions and are rel-
atively close to each other with respect to the size of the scene.
Primary rays, (rays that are cast through the pixels of the image
towards the scene) usually are coherent, especially if they are cast

through adjacent pixels. The same applies to shadow rays which
are used to sample the light sources to determine the intensity of
a given point in the scene. Reflection and refraction rays used to
sample transparent materials are usually less coherent (see Figure
6). Consequently scenes with lots of transparent or highly refrac-
tive materials perform sub-optimal in particular when such objects
occupy a large area on the screen. Even worse, the rays collecting
indirect illumination which are cast by Randomized Quasi Monte
Carlo techniques for global illumination simulations actually are
not coherent at all. This makes global illumination simulations dif-
ficult to implement with coherent ray tracing but, as described later
in this section, not impossible.

All modern interactive ray tracers exploit coherence between rays
to improve scene traversal and ray-geometry intersection perfor-
mance. Together with good acceleration structures the traversal al-
gorithms that take advantage of coherence between rays are respon-
sible for the dramatic speed up that makes realtime performance
possible. This section describes various techniques to utilize the
coherence between rays.

4.1 Tracing Packets of Rays

A packet of rays is simply a number of rays which may be more or
less coherent. The definition of a packet does not strictly require
all the rays to start from a certain point and also does not require
the rays to be parallel or sharing direction signs. However, for rays
with a common starting point and similar directions coherence can
be exploited more easily.

Consider four rays through a block of four adjacent pixels on the
screen, as illustrated in figure 7. These rays are very likely to hit
the same volumes of the acceleration structure and the same scene
geometry. To put them in a packet and handle them together has
many advantages. First, it allows to reuse the loaded data for mul-
tiple intersection computations. This is also called effective cache
utilization which is discussed in detail in section 5. Second, the
computations for the whole packet of rays could be done in paral-
lel on an architecture that allows parallel computations for multiple
data. For example, by using SIMD extensions on todays CPUs in-
tersection computations for four rays can be done in parallel, effec-
tively reducing the runtime of algorithms by a factor of four. While
PCs can only handle packets of 2×2 [Wald et al. 2001a], on special
ray tracing hardware the packet sizes may be up to 8×8 or higher,
i.e. the SaarCOR ray tracing board by Schmittler et al. [2002].

Figure 6: a) A packet of four coherent primary rays. b) Coher-
ent shadow rays. c) Reflection rays are typically not coherent for
strongly curved surfaces.

Certainly, during packet traversal it is possible to have some rays of



a packet which hit different bounding volumes or space partitions.
If that happens, the packet of rays either needs to be tested against
both primitives with those rays masked out that do not overlap the
volume, or the packet is split up and both parts are traversed inde-
pendently. According to Wald et al. [2001a], the traversal overhead
for packets is relatively small and is more than paid off by the over-
all performance improvement.

4.2 Ray Tracing with Ray-Packet-Frustums

Even better than handling packets of rays is the relatively new idea
to handle a packet-representing frustum. The frustum of a packet of
rays can be a few border rays or a number of planes describing the
smallest volume that contains the packet of rays. The outstanding
advantage of using a frustum to represent a bundle of rays is the
fact that determination of the potentially visible set can be done for
a large number of rays with only a few intersection computations.
In some cases it is not even necessary to know the single rays within
the frustum. Similar to view-frustum-culling for rasterization based
algorithms, the scene can be culled against the ray frustum to reduce
the set of potentially intersecting primitives (see Figure 7). This set
can then be intersected with the packet of rays inside the frustum to
find out the actual intersections. Using frustums for scene traversal
can reduce the number of intersection computations dramatically.
Since intersection computations are costly the performance gain is
significant.

Figure 7: A frustum of coherent rays traverses a bounding volume
hierarchy. The rays represented by the frustum are blue. The po-
tentially visible set of bounding volumes is red.

4.3 Multi Level Ray Tracing (MLRT)

The multi level ray tracing algorithm by Reshetov et al. [2005]
makes very effective use of coherence by traversing ray packet frus-
tums. The idea is to tile the image into large blocks and packing
all the primary rays through the pixels of one block into one large
frustum. Depending on the geometric complexity of that block the
frustum may be very effective, for example when a large object
near the camera covers that block entirely. Or else, the block and
the frustum are divided into a number of smaller ones. This pro-
cedure is performed recursively until a frustum hits only one scene
acceleration volume or a minimum block size is reached. In other
words, the local geometric complexity of an image area is directly
derived from the scene acceleration structure. If the frustum is too
large for that area, it overlaps a lot of volumes in the acceleration
structure, hence the geometric complexity of that image block is

too high for its frustum. In any case, it is automatically adapted to
the local complexity by recursive subdivision.

Due to the fact that the multi level ray tracing algorithm automati-
cally adapts to the local geometric complexity of image regions, it
is possible to effectively budget rays. For regions of low complex-
ity the algorithm not only shoots significantly less rays, it also does
not have to perform frustum traversal for a lot of packets which
altogether leads to a huge performance boost.

The multi level ray tracing algorithm is much faster than other real-
time ray tracers for direct illumination evaluation without shadows.
However, since the technique applies to primary rays only, it is not
capable of efficiently rendering many features supported by recent
realtime ray tracers including soft shadows, global illumination, re-
flections and refractions. To support these a multi level ray tracer
would have to be extended with concepts from other recent realtime
ray tracing systems.

4.4 Using Coherent Ray Tracing for Interactive
Global Illumination

Interactive graphics applications have been limited for simple di-
rect illumination that results in an artificial appearance. But, for
highly realistic image synthesis global illumination simulations are
indispensable. Unfortunately most algorithms rely on monte-carlo
random walks for diffuse light propagation simulation which need
to shoot large numbers of totally randomly oriented rays which are
not coherent at all.

Wald et al. [2002] introduced an algorithm which cleverly over-
comes these problems. Their ray tracer was the first that could ren-
der a global illumination simulation at interactive frame rates. They
use the idea of instant radiosity [Keller 1997] to simulate the dif-
fuse light transport in the scene. They generate sets of virtual point
lights which are shot from the original light sources into the scene
along monte-carlo random walks. The indirect illumination is then
calculated by computing the shadows of these virtual point lights.
Due to performance reasons the set of virtual point lights can not
be very large leading to a noticeable discretization error in the im-
age. Be that as it may, because successive images from the same
camera position are calculated with different random numbers and
can be accumulated, the quality is progressively refined for static
scenes. This accumulation effectively removes the bias and con-
verges against the true solution. The algorithm converges within
a few frames, rendering it usable for interactive walkthroughs of
static scenes. Yet, during interaction or animations accumulation of
successive frames is not possible, that is to say, the system produces
sub-standard image quality during interaction (see Figure 8).

Note that unlike traditional radiosity the instant radiosity approach
is a discretization of the light transport not of the receiving geome-
try. Hence, tessellation of the geometry is not necessary and there
are no aliasing artifacts resulting from approximation of the light
transport in the converged image as is the case for traditional ra-
diosity solutions.

Again, the key to interactive frame rates in this context is the ef-
fective use of coherent rays. Even for the randomized illumination
simulation which yields a large number of non-coherent rays for
each pixel there is a way to exploit coherence. A technique known
as interleaved sampling facilitates coherence [Molnar 1991; Keller
and Heidrich 2001]. The motivation for interleaved sampling is that
generating a different set of point lights for each pixel is too costly
and using the same set of point lights for each pixel causes alias-
ing artifacts (see Figure 8a). With interleaved sampling the image
is divided into small blocks where each pixel has a different set of



Figure 8: Interactive global illumination. Illustration made up from
images taken from Wald et al. [2002]. Left side: artifacts during
interaction, b) Right side: converged solution after a few frames.

virtual point lights but the same pixels of different blocks share the
same set of point lights. Interestingly, this also has the side effect
that by assigning the same set of point lights to the same pixels in
different blocks, a number of coherent rays is generated which sam-
ple the same point lights. At the same time the number of different
sets of randomly generated light sources is greatly reduced which
further decreases the number of random walks to be calculated for
these point lights.

Figure 9: Interactive global illumination. Images taken from Wald
et al. [2002] a) No interleaved sampling, no discontinuity buffer
b) 5× 5 interleaved sampling, no discontinuity buffer c) 5× 5 in-
terleaved sampling, 3× 3 discontinuity buffer d) 5× 5 interleaved
sampling, 5×5 discontinuity buffer

While interleaved sampling increases coherence between rays and
reduces the number of virtual point lights, this technique replaces
the aliasing artifacts exhibited of only one set of point lights by
structured noise (see Figure 8b). This noise must then be eliminated
by using a filtering technique called discontinuity buffering. The
discontinuity buffer stores the depth and a normal vector for each
pixel. For example, at a silhouette the depth function is discon-
tinuous and at a sharp edge the normal function is discontinuous.
Since the the indirect illumination is a piecewise smooth function
the variance can be effectively reduced by interpolating it between
neighboring pixels where the geometry is continuous according to
the discontinuity buffer. Of course, the indirect illumination can
not be blurred at geometric discontinuities such as edges or silhou-
ettes. If you take a close look at Figure 8d, you will see that it is
extraordinary noisy on the edges. Broadly speaking, this is not very
distracting, because noise that is superimposed on discontinuities is
less perceivable according to Ramasubramanian et al. [1999].

5 Parallelization and Caching

Many realtime ray tracing algorithms are computationally expen-
sive. For each frame hundreds of thousands of rays have to be tra-
versed through acceleration trees and then tested against geometric
primitives for intersections and at each intersection point custom
shader code must be evaluated. Especially interactive global illu-
mination imposes heavy computational cost on ray tracing systems
due to the high complexity of the simulation of diffuse light trans-
port.

Fortunately, it is in the nature of ray tracing to be inherently paral-
lel. But even more important than that, it is also amazingly scalable.
Ray tracing algorithm can be parallelized to an arbitrary number of
processes on an arbitrary number of computers, if the necessary
communication bandwidth is provided. However, the memory ac-
cess bandwidth and especially the network bandwidth of ray tracing
clusters are limited. To cope with these bottlenecks, effectively us-
ing the available computational resources caching is an important
strategy.

5.1 Parallelism through SIMD Extensions

As pointed out before, the ability of modern CPUs to execute paral-
lel computations enables the efficient evaluation of scene traversal
and intersections for packets of rays for the same cost as a sin-
gle ray. This is possible on off-the-shelf PCs by using SIMD (sin-
gle instruction multiple data) extensions offered by several modern
processor architectures. They allow to execute a floating point in-
struction in parallel on multiple data values (typically two to four),
thereby yielding a significant speedup. They usually also contain
instructions for explicit cache management such as prefetching.

The first application of SIMD instructions for realtime ray tracing
was published by Wald et al. [2001a]. They used it to cast and in-
tersect packets of four rays simultaneously. To make traversal and
intersection tests which are the most costly operations as fast as pos-
sible, they designed their algorithm in such a way that it runs com-
pletely on the caches. Since cache memory access is more than an
order of magnitude faster then RAM access, the resulting speedup
of their system’s ray shooting performance was enormous.

Since on a PC architecture data is transferred between memory and
cache in entire cache lines of 32 bytes, the effective cost of memory
access is not directly related to the number of bytes to be read but to
the number of cache line transfers. According to that it is generally
beneficial to carefully lay out the data structures for optimal cache
usage, i.e. by aligning the structures to a multiple of 32 bytes. In
addition to that, in their implementation Wald et al. keep data to-
gether if and only if it is used together, which keeps the data struc-
tures small and thereby too accounts for optimal cache utilization.
They effectively hide memory access latencies almost completely
by designing their algorithm to cleverly predict what memory will
be accessed and prefetching it, such that it is available in a cache
when it is needed for computations. To make this possible, algo-
rithms need to be simple enough to precisely predict what memory
will be accessed in the near future.

5.2 Distributed Ray Tracing

Distributed execution of parallel algorithms on a networked PC
cluster is a very cheap way to increase the computing power of a
system. Again, this is very easy for ray tracing due to its general
scalability.



A typical distributed interactive ray tracing system, as described by
Wald et al. [2001b], consists of a display server, a scene database
server (multiple databases are possible) and a number of ray trac-
ing clients connected via a high-bandwidth network. The display
server executes the interactive user application and assigns jobs to
the clients. In particular, the server divides the image into many
small tiles and assigns them to the ray tracing clients. These need
to access the scene geometry database server to get the actual vol-
umes of the acceleration structure they need to render the tile. In
the best case they already have the geometry available in their local
geometry caches. Finally, when the tile is complete a compressed
stream of pixels is sent back to the display server. Wald et al. note
that the transfer volume of pixel-data is the limiting factor of such
a realtime ray tracing cluster. When the network connection to the
display server is saturated with pixel streams, the computing power
of the cluster cannot be further increased by adding clients. In other
words, the scalability of a cluster like this is only limited by the net-
work bandwidth.

A realtime ray tracing cluster needs highly sophisticated cache
management and latency hiding techniques. After rendering the
first few frames, the scene geometry is evenly distributed amongst
the rendering client’s caches. To reduce the number of transferred
geometry data over time and thereby increasing rendering speed
of successive frames it is essential to effectively reuse the cached
geometry. To accomplish this, the display server reprojects tiles
from the next frame to the camera position of the last frame. Then
it assigns the new tiles to those clients who recently rendered the
matching tiles in the last frame. Moreover, the clients always queue
at least one more job while they are busy in order to avoid idle
times while waiting for the next job assignment. Likewise, to hide
the network latency for geometry transfer from the scene database
a client suspends processing of a ray which is waiting for geometry
in favor of rays which can be processed immediately because the
geometry they need is already available in caches.

6 Realtime Ray Tracing versus Realtime
Raster Graphics

What are the essential differences between realtime ray tracing and
raster graphics? This section tries to answer this question by com-
paring several aspects of the two rendering principles.

Realism. Rasterization accounts for direct illumination only. Shad-
ows and reflections can be faked but their realism is very limited.
In particular self reflections of a concave object are not possible.
Physically correct refractions are not possible either with pure ras-
terization. On the contrary realtime ray tracing features correct
pixel-accurate shadows from point lights, soft shadows from area
lights, correct display of reflecting materials and physically correct
refractions3 (i.e. glass, water). The rasterization pipeline can han-
dle translucent materials but requires to render them back to front
which involves a sorting overhead. Altogether realtime ray trac-
ing offers a whole lot of more realism and physical correctness for
material appearance and lighting.

Scene Complexity. The most important advantage of ray tracing
over rasterization is its logarithmic complexity in the number of ge-
ometric primitives, whereas the complexity of raster graphics scales
only linear. As a result, massive scenes consisting of billions of tri-
angles can still be ray traced with interactive frame rates. This is
due to the logarithmic complexity of search algorithms in scene ac-
celeration trees. Actually realtime ray tracing has built-in visibility

3Wavelength dependent refraction is not yet possible in realtime

culling. Similar techniques are used with raster graphics to reduce
the workload of the GPU but the user has to take care of it. With
realtime ray tracing all the advanced and highly complex visibility
determination algorithms currently needed for realtime rasteriza-
tion of complex scenes are no longer necessary.

Computation power. To some extent, ray tracing requires signif-
icantly higher computation power than rasterization for scenes of
low complexity because rasterization interpolates lighting informa-
tion between vertices across the pixels in a triangle in image space
while ray tracing evaluates lighting per pixel. Then again for very
complex scenes, where most of the triangles are smaller than a
pixel, raster graphics are not considered to be significantly faster.
To deliver a high frame rate on a single PC it is clear, that realtime
ray tracing hardware is necessary. Several prototypes have been de-
veloped but they are not yet ready for prime time [Schmittler et al.
2002; Schmittler et al. 2004; Woop et al. 2005].

Parallelization. Ray tracing is inherently parallel. Each pixel, for
instance, may be calculated on a different computer without the
need for any communication between them. Since rasterization in-
terpolates lighting between vertices it cannot be parallelized to the
same extent as ray tracing.

Ease of use. Realtime ray tracing relieves application program-
mers from a lot of tedious optimizations such as view-frustum-
culling which are necessary for today’s applications of raster graph-
ics. Also, there are not so many performance limiting bottle-necks
that impose restrictions on the content to be rendered as for the ras-
terization pipeline. On top of that, users are relieved from writing
complicated algorithms that fake shadows, reflections, etc. Lastly
there is an open realtime ray tracing API OpenRT [Dietrich et al.
2003] which is inspired by and very similar to its counterpart from
the rasterization world (OpenGL). This API makes the application
of realtime ray tracing hardware as easy as for other graphics sub-
systems.

Geometric scene description The only graphics primitives that can
be handled by rasterization pipelines are triangles. By contrast the
list of geometric primitives that are supported by realtime ray trac-
ing systems (without triangulation or other modifications) is quite
large: triangles [Wald et al. 2001a], freeform surfaces [Benthin
et al. 2004], point based surfaces [Wald and Seidel 2005], bezier
patches [Benthin et al. 2006], volume data in all kinds of grids
[Parker et al. 1999; Marmitt et al. 2004, Marmitt and Slusallek
2006], implicit surfaces [Knoll et al. 2007] ... and so on.

Dynamics. Limited support of dynamic scenes has long been the
biggest disadvantage of realtime ray tracing systems compared to
raster graphics. Despite this, better solutions have been found re-
cently to support realtime ray tracing of dynamic scenes in gen-
eral (see section 3.2 and 3.3) and skinned animations in particular
[Günther et al. 2006].

7 Conclusion

For a long time researchers have argued that ray tracing is superior
to rasterization in various points, but nobody would have imagined
that ray tracing could be applied so effectively for realtime render-
ing. As recent software realtime ray tracing systems become much
more powerful than high-end rasterization hardware, it seems like
the advent of a new age for realtime graphics. Hardware solutions
are not yet as optimized and feature rich as rasterization hardware,
though. Only the future can tell if realtime ray tracing hardware will
eventually become good enough, so that ray tracing may supersede
rasterization as the major realtime rendering paradigm.



This paper has given a an overview of the possible acceleration
structures which have different advantages with respect to dynamic
scenes. We have seen, that kd-trees are not primarily the fastest
acceleration structures any more and that bounding volume hierar-
chies as well as the bounding interval hierarchies are less restrictive
for animated geometry. The analysis of the typical computational
complexity of a ray tracer motivates the hypothesis that the use of
a well built scene acceleration structure combined with a carefully
optimized scene traversal algorithm are most effective in order to
increase the frame rates of realtime ray tracers.

Next, this paper pointed out the importance of coherence between
rays for interactive ray tracing. Results from various implementa-
tions show that tracing packets or even frustrums of rays yields huge
performance improvements. Even global illumination simulations
can be rendered in realtime on a distributed coherent ray-tracing
cluster by applying interleaved sampling and discontinuity buffer-
ing.

On top of that, the possibilities of parallelization have been ex-
plored especially using SIMD instructions on a single processor as
well as distributing workload on a PC cluster. We have seen that
parallelization always goes hand in hand with caching and sophisti-
cated cache-utilization mechanisms. The effective utilization of the
large and fast caches of modern CPUs via intelligent prefetching of
data results in performance improvements of more than a magni-
tude.

The final comparison of realtime ray tracing versus raster graphics
showed that as far as realism and scalability are concerned realtime
ray tracing is more than competitive to rasterization hardware but
ray tracing hardware is not yet ready for the prime time. In near fu-
ture, when realtime ray tracing has been established in the realtime
rendering domain the development of interactive graphics applica-
tions will be significantly simplified because faked shadows and
reflections, complicated rasterization-pipeline-aware optimizations
and advanced view-frustum-culling algorithms will not be neces-
sary any more.
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WÄCHTER, K., AND KELLER, A. 2006. Instant ray tracing: The
bounding interval hierarchy. In Proceedings of EUROGRAPH-
ICS 2006.

WHITTED, T. 1980. An improved illumination model for shaded
display. Commun. ACM 23, 6, 343–349.

WOOP, S., SCHMITTLER, J., AND SLUSALLEK, P. 2005. Rpu:
a programmable ray processing unit for realtime ray tracing. In
SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, ACM Press,
New York, NY, USA, 434–444.


